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Charge confinement effect in cuprate superconductors:
an explanation for the normal-state resistivity and pseudogap
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Abstract. The fact that the stripe phase and pseudogap in the cuprate superconductors occur in the same
doping regime is emphasized. A model based on charge confinement in self-organized nanometer-scale stripe
fragments is proposed to understand various generic features of the normal-state energy gap including the
magnitude of the gap, its anti-correlation with the superconducting gap, and the d-wave symmetry in its
k-dependence. This model also provides a basis for understanding other anomalous normal-state properties
such as the linear temperature dependence of electrical resistivity.

PACS. 74.25.-q General properties; correlations between physical properties in normal and
superconducting states – 74.25.Fy Transport properties (electric and thermal conductivity, thermoelectric
effects, etc.) – 71.10.Li Excited states and pairing interactions in model systems

1 Introduction

After more than ten years of extensive research on su-
perconductivity in cuprates, it is generally agreed that
the normal-state of the high-temperature superconductors
is significantly different from that of their low temper-
ature conventional counterparts. It has also become in-
creasingly clear that an understanding of the normal state
is a prerequisite to the eventual resolution of the mech-
anism responsible for high-temperature superconductiv-
ity. Among the most intriguing normal-state properties
are the linear temperature-dependent resistivity, pseudo-
gap phenomena, and the stripe phase. In this work, we
will show that they are closely related. Based on charge
confinement in nanometer-scale stripe fragments, we will
present a model to explain the pseudogap and the linear
temperature-dependent resistivity as a function of doping.

The normal-to-superconducting phase transition tem-
perature (Tc) marks the inception of a macroscopic phase-
coherent pair state. The existence of a superconducting
gap, ∆S, is well-established by numerous experiments [1].
In the conventional low-Tc s-wave superconductors such
as Al, Hg, Pb, etc., a gap is found over the entire Fermi
surface. In the high-Tc cuprate superconductors, recent
phase-sensitive pairing symmetry tests [2,3] have con-
cluded that the wave vector (k) dependent order parame-
ter ∆S(k) is a complex number with d-wave symmetry.
In other words, the gap ∆S(k) varies as k2

x − k2
y and

changes its sign across the node lines kx = ±ky. While
the almost decade-long intense debate on the symmetry
of the superconducting gap draws to an end, another gap,
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also with d-wave symmetry, is found recently in the nor-
mal state of many cuprate superconductors [4–7]. This
normal-state energy gap (∆N), also called pseudogap, is
characterized by a depression in the electronic excitation
spectrum. The quasiparticle density of states is reduced
but does not vanish in any direction unlike in the case
of a d-wave superconducting gap. The experiments [8–10]
that have suggested the existence of a pseudogap include:
NMR, Raman spectroscopy, neutron scattering, measure-
ments of electrical resistivity, Hall effect, thermopower,
optical conductivity, specific heat, and angle-resolved pho-
toemission spectroscopy (ARPES). In particular, several
recent high-resolution ARPES experiments [4–7] have
convincingly shown that the pseudogap opens at a temper-
ature T ∗ well-above Tc, and has the identical characteris-
tic k-dependence in amplitude as that of the d-wave su-
perconducting gap ∆S. From the analysis of the ARPES,
heat capacity and magnetic susceptibility data, it is con-
cluded [8,10] that the observed pseudogap is from charge
excitation and there is no separate spin gap. The normal-
state gap has been observed mostly in the under-doped
region and it vanishes gradually at or near the optimal
doping. There is apparently no theoretical model that can
describe satisfactorily all the generic features associated
with the pseudogap.

Another interesting and equally intriguing phenome-
non discovered in the same doping range of the cuprate
superconductors is the formation of the stripe phase
[11–13]. It is a manifestation of temporal and spatial
modulations of charges (dopant-induced holes) and the
spins associated with the copper atoms in the CuO2

planes. Based on the results of neutron scattering ex-
periments by Tranquada et al. [11], it is concluded
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that the in-plane holes segregate into periodically-spaced
stripes between the intervening anti-ferromagnetic insu-
lating/semiconducting domains with periodicity different
from that of the underlying crystal lattice. The incom-
mensurate periods of the charge stripes and the spin-spin
correlation length are of the order of nanometers, and are
doping dependent. The fact that similar topological stripe
phases were also found in nickelates and manganites sug-
gests that it may be a common feature of strongly corre-
lated electron systems. There have been several theoretical
models studying the origin of the stripe phase [14–16]. In
this work, we will not deal with this issue. Rather, we will
utilize the experimental fact that the periodic charge and
spin modulations are on the scale of nanometers. The en-
ergy levels of the charges confined in such small volumes
are quantized just as in the case of quantum dots [17]. This
charge confinement effect together with quantum fluctu-
ations of the order parameter (∆S) in these nanometer-
scale grains offer a natural explanation for the pseudogap
phenomena. Our charge confinement model also provides
a basis for understanding various anomalous normal-state
properties of the cuprates, including the linear tempera-
ture dependence of resistivity.

The neutron scattering experiments have convincingly
established the existence of stripe phase in various ox-
ides [11,12]. In cuprates such as La2−xSrxCuO4 (LSCO)
and YBa2Cu3O7−y (YBCO), the charge and spin mod-
ulations fluctuate with time and position. The stripes
can be static through impurity pinning as demonstrated
in the Nd-doped LSCO [11]. Actually, alternating metal-
lic (charge-rich) and semiconducting (charge-poor) stripes
with nanometer dimensions were observed [18] as early as
1989 in the local conductance images of YBCO crystals
with a high-resolution cross-sectional scanning tunneling
microscope (STM). On the surface of the in situ-cleaved
YBCO crystals the stripes are pinned by certain surface
features. The surface of the YBCO crystals probed by
STM may be under-doped because of the escape of the
oxygen into the vacuum. The results of the STM exper-
iments [18] indicate that the stripes are fractured into

pieces with a length of about 50 to 100 Å which is about
four times the spin-spin correlation length as deduced
from the neutron scattering data [11]. The STM results
also suggest that the height of the stripes is equal to one
c-axis lattice constant (c = 11.7 Å for YBCO). Recent
observations [19,20] of electronic modulations along the
Cu–O chains in YBCO are consistent with our STM ob-
servation of stripe fragmentation [18]. Furthermore, recent
electron microscopy studies on perovskite manganites [21]
also indicate that the existence of stripe fragmentation
is probably a general feature of strongly electron corre-
lated oxide systems. The in-plane period of the stripes
in cuprates near the optimal doping, as suggested from
the neutron scattering data, is about 15 Å for LSCO and
YBCO. Based on the STM and the neutron scattering
data, one can envision that the holes reside in nanometer-
scale boxes with an average dimension of 15× 13× 60 Å3

in LSCO, for instance. The charge boxes are separated
by insulating/semiconducting antiferromagnetic domains

of similar sizes. In the following, we will propose a model,
based on quantization effects arising from the charge con-
finement in these nano-boxes, to understand the pseudo-
gap phenomena in cuprate superconductors. In particular,
we will look for an energy scale and its doping dependence
corresponding to T ∗ and its anti-correlation with Tc in the
under-doped regime.

2 Normal-state resistivity

Before this is done, we will test the idea of quasi-1D
charge boxes by considering the temperature and doping
dependences of the in-plane resistivity. Extensive studies
[9,22–24] on normal-state resistivity ρ(T ) in various
cuprate superconductors in the optimal and under-doped
regimes have firmly established the following universal be-
havior: 1) a linear temperature-dependent resistivity that
shows no saturation up to a temperature as high as 1000 K
(for example, see the ρ(T ) data of the LSCO system in
Fig. 1); 2) an identical value of the temperature coefficient
dρ/dT (1.2 µΩcm/K) to within 20% for many cuprates
at optimal doping [25]. For a given cuprate system such
as the LSCO superconductors, the slope dρ/dT increases
with decreasing doping (see the inset of Fig. 1). The linear-
T dependence of resistivity is deviated below T ∗ which
signals the opening of a pseudogap. In the under-doped
regimes, the sharp rise in ρ(T ) below the shallow resis-
tivity minimum (Fig. 1) has been attributed to hopping
conductivity of localized charge carriers [24].

To understand the linear-T resistivity phenomena, we
recall the exact theorems that state that all electronic
states in any disordered one-dimensional structure are
localized [26]. Electronic conduction based on phonon-
induced hopping and diffusing processes involving such
localized states has been established for more than thirty
solids [27]. At low temperatures, charge transport is dom-
inated by the well-established process of hopping con-
duction. At high enough temperatures, however, the con-
duction is mainly diffusive. The temperature-dependent
resistivity, ρ(T ), due to charge diffusion is always linear
in temperature (in the high temperature limit (T > T ∗)
where the thermal energy is much larger than the poten-
tial barrier for the localized states inside the grains) and
can be described by the well-known Einstein formula:

ρ(T ) =

(
kBT

ne2

)
d

〈ν0〉〈(ri − rj)2〉
(1)

where n is the charge-carrier concentration, d the di-
mensionality, 〈ν0〉 average carrier jumping frequency, and
〈(ri − rj)

2〉 average phonon-assisted electronic random-
walk distance squared involving states centered on ri and
rj [27]. The quantity 〈ν0〉〈(ri − rj)

2〉/d is the diffusion
constant D(d). In the case of a cuprate superconductor, if
the charge transport is mostly via the conduction through
the stripes, then d = 1 in equation (1). The quantity n is
the product of the number of charge stripes per cross-
sectional area and the charge density per unit length of
the stripe. Therefore, n is proportional to the number of
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Fig. 1. In-plane resistivity ρab(T ) as a function of temper-
ature for La2−xSrxCuO4 with various doping concentrations,
x ≈ p (after Refs [22,23] where p is the number of holes per
CuO2 plane. The dotted and solid curves are for the epitaxial
films [22] and single crystals [23] respectively. The arrows mark
the opening of the pseudogap T ∗. In the inset, the dρab/dT
data are plotted as a function of p: (�) c-axis oriented epi-
taxial films [22]; (4) polycrystals [22]; and (�) single crystals
[23]. All three sets of data are presented in units normalized
at the optimal doping (p = 0.15) to remove any uncertainty
arising from the sample geometrical configuration. The values
of dρ/dT at p = 0.15 are: 0.76 (epitaxial films); 3.82 (polycrys-
tals) and 1.33 (single crystals) in the units of µΩcm/K. The
dρab/dT results for the single crystals are also shown in the
absolute units (left vertical axis) in the inset. The solid curve
is the prediction of equation (1) on the doping dependence of
dρ/dT ∝ 1/p, as discussed in the text.

holes (p) per Cu in the CuO2 planes (for example, x ≈ p in
the La2−xSrxCuO4 system). As indicated by equation (1),
the diffusive charge conduction is always characterized by
a linear temperature dependence of resistivity, irrespec-
tive of the dimensionality d. To show that low-dimensional
charge transport indeed prevails in the normal-state of
the cuprates, we first examine the in-plane resistivities
(ρa and ρb, a and b refer to the crystallographic axes)
as a function of temperature in an untwinned and opti-
mum oxygenated YBCO single crystal [28]. In terms of
our stripe-based charge-diffusion model and equation (1),
we expect the following: 1) both ρa(T ) and ρb(T ) depend
linearly on temperature; 2) ρa(T ) > ρb(T ), if the stripes
are running in the b direction; 3) as temperature increases
to a crossover point (TD) when the diffusion length `D is

about equal to the stripe width (∼ 15 Å), dρb/dT should
change gradually by a factor of two. This signifies the 1D
to 2D dimensional crossover based on equation (1) (i.e.
the value of d changes from 1 to 2); and 4) for T > TD,
dρa/dT and dρb/dT are equal because the charge trans-
port in the direction perpendicular to the stripe direc-

tion b is always 2D in nature. All the above predictions
were indeed observed [28]: dρa/dT = 1.16 µΩcm/K; for
ρb(T ) a change of the temperature coefficient was ob-
served at TD ≈ 270 K and dρb/dT = 0.52 µΩcm/K for
T < TD and dρb/dT = 1.08 µΩcm/K for T > TD. The
fact that dρb/dT increases precisely by a factor of two
above TD represents a strong supporting evidence for the
stripe model. The crossover diffusion length can be esti-
mated by using the following formula: `D =

√
~D/(kBTD).

The value of D can be calculated from the experimental
values of dρ/dT and the equation (1) for a given doping
concentration p and dimensionality. For YBCO at opti-
mal doping (p = 0.15), `D is found to be about 14 Å for

TD = 270 K, D = 6.5× 10−5 m2s
−1

which corresponds to
dρb/dT = 0.52 µΩcm/K. This value is very close to the

stripe period (∼ 15 Å) deduced from the neutron scatter-
ing experiment [11]. As a second example, we will use our
stripe model to understand dρab/dT as a function of dop-
ing (p) in the LSCO system. Since the widths of the stripes
in YBCO and LSCO are about the same, ρ(T ) is in the
2D regime and there should be no dimensional crossover
in the temperature range of T > T ∗ > TD (≈ 300 K).
This is indeed consistent with the results of many resis-
tivity measurements (see, for example, Fig. 1). Further-
more, the fact that the magnitude of dρab/dT in single
crystal LSCO (∼ 1.3 µΩcm/K) is about the same as that
of dρa/dT or dρb/dT of YBCO in the 2D regime suggests
that the optimum-Tc cuprate superconductors are char-
acterized by a universal dρ/dT of ∼ 1 µΩcm/K at high
temperatures (T > T ∗) in good agreement with the exper-
iments [25]. In terms of the equation (1), this implies that
the diffusion constant D(2) is approximately constant and
is not strongly doping dependent. Based on these consid-
erations, equation (1) predicts that dρ/dT should be in-
versely proportional to the hole concentration p. This is
in good agreement with three sets of data available in the
literature for the LSCO system (see the inset in Fig. 1).

3 The model

In the study of pseudogap, the relevant energy scale will
be set by the length of the stripe fragments (L) which
can be estimated by the temperature TH at which the
diffusive charge transport inside the fragments ceases to
be effective, when the thermal diffusion length `H is larger
than L, and is replaced by ballistic conduction. The overall
conduction is then dominated by variable range hopping
(T < TH). The length `H is related to TH by the diffusion

formula: `H =
√
~D/(kBTH) used before. As an example,

TH is approximately 100 K for p = 0.04 (see Fig. 1 and also

data in Ref. [24]). This leads to `H ≈ 20 Å. The doping de-
pendence of TH in LSCO system has been studied by Ell-
man et al. [24]. Based on these results one concludes that
`H increases with increasing doping. These results support
that the length of the charge boxes is indeed of the order of
20–100 Å and are in agreement with the STM results [18].
In addition, a recent theoretical calculation by White
and Scalapino based on the 2D t-J model also indicates
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the existence of charge-poor and charge-rich regions
(∼ 80 Å) along the stripes [29]. A similar conclusion on
the width of stripes in LSCO system as a function of dop-
ing has been obtained by a recent neutron scattering ex-
periment [30]. As a first approximation, in this study we
assume that the width and the length of the stripes de-
crease linearly with decreasing doping concentration. The
height (= 13.3 Å) remains a constant of doping. Since the
time scale of the stripe fluctuation is of the order of a few
ps [16] and thus two orders of magnitude slower than the
transit time of the charge carriers through the stripe frag-
ments (≈ 10 fs) (estimated from the stripe length and the
Fermi velocity), we therefore assume a static stripe phase
for our calculations.

Inspired by the recent elegant superconductivity ex-
periments [31] on nanometer-scale Al particles, the very
definition of superconductivity in ultrasmall particles are
re-examined in terms of the even-odd parity effect and
quantum fluctuations [32–34]. To study the ground state
energies of small superconducting grains, Matveev and
Larkin (ML) [32] use following pairing Hamiltonian:

H =
∑
jσ

εja
†
jσajσ − g

∑
jj′

a†j↑a
†
j↓aj′↓aj′↑ (2)

where εj is the single particle energy level and the average
level spacing is defined as δε = 〈εj+1 − εj〉. The opera-

tor a†jσ creates a charge state with quantum number j
and spin σ, and g is the pairing interaction strength. The
work by ML clearly shows that in the small grain limit
(δε � ∆S), quantum fluctuations induced corrections to
the standard BCS mean-field approximation become im-
portant. As the grain size decreases, the small grain sys-
tem described by equation (2) exhibits a superconducting
to normal crossover that is dominated by the fluctuations
of the order parameter ∆S, the BCS superconducting gap.
The physics of quantum fluctuations can be traced back to
the effect of logarithmic renormalization [32]. This effect is
not predicted by the BCS mean-field approximations. As a
result of quantum fluctuations, the energy correlations are
short-ranged in the normal state [33]. Based on the same
Hamiltonian (2), Mastellone, Falci, and Fazio (MFF) [33]
studied pair correlations in ultrasmall grains in the canon-
ical ensemble. The results of this numerical calculation
confirm the analytic results of ML on the ground state en-
ergy in the small and large grain limits. Furthermore, they
computed the spectroscopic gap EG, the energy that sep-
arates the ground state and the first excited many-body
level. They demonstrated that both the ground state en-
ergy and EG are parity-dependent and are universal func-
tions of δε/∆S.

In the present work, we have identified the spectro-
scopic gap as the energy scale in the pseudogap problem of
cuprate superconductors (i.e. EG = akBT

∗ = ∆N, a ≈ 1).
We will concentrate on the LSCO system for the reason
that some data on doping dependence of the stripe phase
are available as discussed earlier. From the previous dis-
cussion, we have concluded that the average size of the
fragments of the stripes in LSCO near the Tc-optimal com-
positions is about 15 Å × 13.3 Å (c-axis lattice constant)

× 60 Å. The exact charge distribution in such nanograins
is not experimentally determined but is believed to reflect
the balance between charge-charge correlation and hy-
bridization. As a function of decreasing doping, the holes
tend to localize to form one-dimensional sheets. In the ab-
sence of experimental data on the doping dependence of
the charge distribution, we will assume that the holes are
uniformly distributed in the charge boxes except at the
composition range where x is less than about 0.05. We
can now proceed to calculate the number of holes in the
charge box, N . For LSCO, N is found to be 83 for p = 0.2
(nanograins with an average volume of 20× 13× 75 Å3).
The quantum level spacing δε can be estimated by:

δε ≈
2π2~2

3m∗V 2/3N1/3
(3)

where m∗ is the effective mass of the charge, and V is
the volume of the box. For the present study, we assume
m∗ is equal to the free electron mass in the nanobox. For
N = 83, δε ≈ 15 meV. We are ready to apply the MFF
numerical results to determine EG. We first determine ∆S

for a given hole concentration p by making use of the fol-
lowing empirical formula for Tc [8,10] and ∆S:

Tc

Tc,max
= 1− 82.6(p− 0.16)2 (4)

where Tc,max = 38 K for LSCO and ∆S = 2.5 kBTc.
The numerical data of MFF on EG/δε which is a uni-
versal function of δε/∆S, can then be used to determine
the value of EG as a function of doping. For example,
the ratio δε/∆S ≈ 2 (for p = 0.2) leads to the follow-
ing results: EG = 13.5 meV for odd-number grains, and
EG = 24.5 meV for even-number grains. As expected, the
lowest energy needed to excite an even-number particle is
higher than that for an odd-number counterpart which al-
ready has an unpaired charge. A bulk sample may consist
of charge stripe fragments with both even and odd number
of charges. The exact even–odd ratio is not known. Fur-
thermore, the length of the fractured stripes may vary. It
should be pointed out that extra long stripes are proba-
bly not stable against fragmentation. The stripes with a
much below-average length will give rise to an EG much
higher than the average value [35]. Another factor that
should be taken into account is that in the case of d-wave
superconductors, the parity effect is reduced by a factor of√
N , as pointed out by Golubev and Zaikin [34] recently.

This effect is most pronounced near the optimal composi-
tions and gradually diminishes in the low doping region.
Because there is already an unpaired charge in the odd-
number grains, the d-wave correction is most pronounced
in the even-number grains. Therefore we assume that the
value of EG in the odd-number grains remains unchanged
by this effect in our calculation. For example, in the case of
p = 0.2, the corrected values of EG are 15 meV (13.5 meV)
for the even (odd) grains.

With the above considerations in mind, we present our
calculated values of EG as a function of doping p in Fig-
ure 2. For comparison, the experimental data of T ∗ ob-
tained with various charge- and spin-response probes are
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Fig. 2. A comparison between the experimental T ∗ data (after
Refs [8–10]) and the calculated values of the excitation gap EG

as a function of doping p for the La2−xSrxCuO4 (LSCO) sys-
tem. The solid and dashed curves are for even and odd-number
systems respectively. The experimental results are compiled
from various spin- and charge-response measurements as indi-
cated by different symbols in the figure legend. Some of the
YBCO data are also included to demonstrate the universal-
ity of the pseudogap phenomena. A preliminary calculation of
EG for YBCO (assuming the same size for the nanograins)
indicates a slight change of 10–20% from those calculated for
LSCO, still well within the scatter of the experimental data.

plotted in the same figure. As shown in Figure 2, the calcu-
lated results have definitely provided an energy scale that
corresponds to the pseudogap data kBT

∗. The doping de-
pendence of T ∗ can be understood fairly well except in the
low doping regime. It is possible that the nanograin system
crosses over to the regime of one-dimensional charge con-
finement, and the formula for the δε estimate is no longer
valid. Also, if the charge and spin stripes are not equal
in width, the effective doping per grain increases resulting
in a decrease of δε. Furthermore, the issue of sample in-
homogeneity may become more acute in this low doping
region.

4 Discussion

As seen in Figure 2, the results of our calculations based on
charge confinement in nanograins have captured the essen-
tial features of the pseudogap in cuprate superconductors.
Our model provides not only the correct energy scale for
T ∗, it also explains why the magnitude of the normal-state
energy gap anti-correlates with the size of the supercon-
ducting gap (i.e. Tc), and why the pseudogap gradually
disappears in the over-doped regime. The fact that both
EG and ∆S are determined by the same underlying pair-
ing interaction (i.e. the same Hamiltonian, Eq. (2)) guar-
antees that they will have the same k-dependence. This

gives a natural explanation for the d-wave symmetry ob-
served for both the normal-state [5,6] and superconduct-
ing gaps [3] in Bi2Sr2CaCu2O8+y. Although this conclu-
sion requires no knowledge of the microscopic mechanism
for the pairing interaction (g in Eq. (2)). It is of interest
to note that the nano-scale charge-stripe fragments dis-
cussed here represent a close analogy of quantum dots [17].
Electrons or holes confined in a nanometer-scale grain can
enhance charge-charge correlations that could lead to at-
tractive interaction [17]. In fact, BCS pairing induced ex-
citation gap (parity gap) in nuclei due to particle confine-
ment was suggested [36] in 1958 soon after the advent of
the BCS theory of superconductivity.

In the same doping range where the pseudogap is ob-
served, there are also many anomalous properties above
Tc in the cuprate superconductors that are considered to
be the signatures of a non-Fermi liquid normal state. It
may be worthwhile to re-consider these unusual charac-
teristics of cuprates in the light of a model based on alter-
nating hole-rich and hole-poor nanograins. The quasi-1D
nature of the charge boxes makes the conventional
electron-phonon scattering process ineffective for charge
transport due to limitations of available phase space. This
is consistent with the fact that the linear temperature
dependence of resistivity cannot be understood in terms
of standard electron-phonon scattering mechanism. On
the other hand, the 1D nature of charge transport in-
herent in the stripe phase results in a forward scatter-
ing process which may favor the occurrence of high-Tc

superconductivity in cuprates [37]. In addition to the ev-
idence presented in this work, another strong evidence
for quasi 1D electronic structure in YBCO-systems is the
ARPES observation of extended (1D) Van Hove singular-
ity along the Γ -Y direction [38], which is parallel to the
Cu–O chains (stripes). The Van Hove singularity has been
discussed in the literature as a possible Tc-enhancement
mechanism [39].

As another example, the two relaxation rates ob-
served [40] in the LSCO system may just be a manifesta-
tion of the different scattering times in the charge stripes
and the in-between antiferromagnetic domains. The dis-
creteness of the energy levels in the box should mani-
fest itself in the quasiparticle tunneling spectroscopy of
the metallic (charge-rich) stripes but not the insulating
(charge-poor) stripes. This apparently has been observed
in an STM experiment [18] with YBCO. A recent obser-
vation [41] of a low-temperature pseudogap in the vor-
tex cores of Bi2Sr2CaCu2O8+y can be understood in the
sense that the vortex core is in the normal-state albeit
at a temperature below Tc. More interestingly, the ob-
served unusually large doping-dependent energy gap (∆p)
in Bi2Sr2CaCu2O8+y [41,42] can be quantitatively identi-
fied with the spectroscopic gap EG in our model. There-
fore, the smooth variation of ∆p across Tc, as observed in
spectroscopic measurements [41,42] finds a natural expla-
nation now.

Our calculation of EG makes use of the numerical re-
sults based on an isolated superconducting grain with a
fixed number of particles [33]. In realistic samples, there
must be coupling between the nanograins via particle
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exchange. As a consequence, an itinerant particle will
choose to reside in an odd-number grain for energetic rea-
sons (the pairing energy g is gained and the cost of EG

is avoided). Therefore, in equilibrium, the even-number
grains outnumber the odd ones, resulting in a reduced
spin susceptibility in the pseudogap state as observed ex-
perimentally [8,9]. The fact that the experimental data
for T ∗ can be well-described by the calculated EG sug-
gests that this coupling is not large enough to smear out
the discrete quantum level effect at least for T < T ∗.
In fact, intergrain particle exchange (i.e. the fixed parti-
cle number assumption is relaxed) allows a macroscopic
phase-coherent superconducting state to establish below
Tc. This interaction can be accomplished by the Joseph-
son coupling between the grains, for instance. Indeed, the
hysteretic magnetic susceptibility as a function of field and
temperature in cuprate superconductors was explained in
terms of a spin-glass-model [43]. This model is based on
a 2D disordered array of Josephson coupled domains of
about 100 Å in size. An estimate for the in-plane critical
current density Jc based on this array of nanometer-scale
Josephson junctions yields Jc ≈ 8 × 107 A/cm2 at low
temperature, assuming that the Josephson coupling en-
ergy EJ = ~Ic/(2e) = kBTc (Tc = 100 K), where Ic is the
intergrain critical current. A recent analysis of the temper-
ature dependence of Jc also suggests Josephson-coupled
domains in various YBCO samples [44].

We would like to thank M.B. Ketchen, R.H. Koch, D. Mitzi,
I. Morgenstern, D.M. Newns, P.C. Pattnaik, Ch. Renner, J.Z.
Sun and J.M. Tranquada for useful discussions.
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37. R. Zeyher, M.L. Kulić, Phys. Rev. B 53, 2850 (1996).
38. K. Gofron, J.C. Campuzano, A.A. Abrikosov, M. Lindroos,

A. Bansil, H. Ding, D. Koelling, B. Dabrowski, Phys. Rev.
Lett. 73, 3302 (1994).

39. R.S. Markiewicz, J. Phys. Chem. Solids 58, 1179 (1997)
and the references therein.

40. H.Y. Hwang et al., Phys. Rev. Lett. 72, 2636 (1994).
41. Ch. Renner et al., Phys. Rev. Lett. 80, 3606 (1998).
42. Ch. Renner et al., Phys. Rev. Lett. 80, 149 (1998).
43. I. Morgenstern, K.A. Müller, J.G. Bednorz, Z. Phys. B 69,

33 (1987).
44. H. Darhmaoui, J. Jung, Phys. Rev. B 57, 8009 (1998).
45. A. Bianconi, M. Missori, J. Phys. I France 4, 361 (1994).
46. A. Perali, A. Bianconi, A. Lanzara, N.L. Saini, Solid State

Commun. 100, 181 (1996).


